Meet the HydraProbe®. A rugged soil sensor with patented technology to measure the three most significant soil parameters—moisture, electrical conductivity and temperature.
The HydraProbe® is the most scientifically researched soil sensor available and is depended on by the USDA, NOAA, farmers, leading irrigation companies, and universities for over 25 years. It has been engineered to handle the terrain you want to measure and provides data you can trust year after year.

The Science 
Behind HydraProbe®

HydraProbe® was originally developed by the physics department at Dartmouth College. It’s “dielectric impedance” measurement principle differs from TDR, capacitance, and frequency soil sensors by taking into account the energy storage and energy loss across the soil area using a 50 MHz radio frequency wave.

Unlike other soil sensors, this unique, patented method separates the energy storage (real dielectric permittivity) from the energy losses (imaginary dielectric permittivity). Complex mathematical computations performed by an onboard microprocessor process the reflected signal measurements to accurately determine the soil’s dielectric permittivities—the key parameters behind the soil moisture and bulk EC measurement.

The HydraProbe®’s detailed mathematical and signal characterization of the dielectric spectrum helps factor out errors in the soil moisture measurement such as temperature effects, errors due to salinity, and soil type. Low inner-sensor variability means there is no need for sensor-specific calibrations.

This method has passed t­he most rigorous scientific peer review from dozens of journals such as t­he Vadose Zone Journal, American Geophysical Union, and T­he Journal of Soil Science Society of America.

1

Strong, non-bending, non-corrosive stainless steel tines

2

Fully potted electronics—immersible in water.

Up to 5 year warranty
3

Durable 18 gauge, UV-resistant high-density polyethylene cable can remain buried or be exposed to the elements.

Maintains accuracy for years with no calibration.

Patented Sensor Technology

HydraProbe uses unique “Coaxial Impedance Dielectric Reflectometry” to provide consistent long-term accuracy of moisture, salinity and temperature in any soil type. This also provides low inter-sensor variability, so every sensor measures the same without the need to calibrate.

MOISTURE
SALINITY (BULK EC)
TEMPERATURE

REAL PERMITTIVITY

IMAGINARY PERMITTIVITY

PORE WATER EC

Reliable

Continual, long-term data without calibration.

Accurate

Consistent research-grade accuracy every season, every location.

Simple

Forget calibrating, ignore the soil type. Just set it and forget it.

Rugged

Durable stainless steel tines, fully potted components and a 5-year warranty.

Reliable

Continual, long-term data without calibration.

  • Stable—no sensor drift, ensuring continual accuracy.
  • Patented technology that accurately measures moisture and electrical conductivity permits more accurate optimization of watering and fertilization than with just moisture.
  • Depended on by the USDA, NOAA, leading irrigation companies, and many universities for over 20 years. Used by NASA for ground truthing of satellite-based soil imaging.
  • Soil moisture calibration has been rigorously peer-reviewed, making it one of the most trusted soil sensors available.

Accurate

Consistent research-grade accuracy every season, every location.

  • Unparalleled spatial and temporal measurement consistency. No sensor-to-sensor variations across locations, seasons, soil types or moisture range.
  • Instant measurement of the 3 most significant soil parameters simultaneously—moisture, salinity and temperature.
  • Unlike most TDR or capacitance-based sensors, HydraProbe is less sensitive to changes in temperature, salinity, and soil mineralogy.

Simple

Forget calibrating, ignore the soil type. Just set it and forget it.

  • Repeatable accuracy and stability without the need for calibration in most soils.
  • Digital sensor using the SDI-12 protocol—no setup, just connect to data logger. Compatible with any SDI-12 capable data logger.
  • Zero maintenance required.

Rugged

Durable stainless steel tines, fully potted components and a 5-year warranty.

  • Can remain in-situ indefinitely, or relocated and redeployed without worry.
  • Ideal for remote locations, harsh environments and applications where data is critical.
  • Enables measurement of native (undisturbed) soil, even hard-packed clay.
  • Industry-leading 5-year warranty.

 

HydraProbe PROFESSIONAL

The HydraGO lets you take HydraProbe to go.

For HydraProbe PROFESSIONAL

  • VWC (% Moisture)
  • Temperature (°C / °F)
  • Electrical Conductivity (EC)
  • Pore Water EC
  • Thermal compensation
  • 5 standard soil calibrations
  • Custom calibrations can be programed into the sensor
  • 5 year warranty
  • Operating temperature: 40°C to 75°C

Take soil measurements anywhere, without the effort or expense of setting up a permanent soil monitoring system. Your smartphone communicates wirelessly with the HydraGO using Bluetooth.

Simply insert the probe into the soil, and tap on the “Sample” button in the app. The location of each measurement is recorded along with the soil measurement data. All data can be saved and emailed as a .CSV for analysis in Excel.

Technical Specifications

MEASUREMENT

ACCURACY

RANGE

RESOLUTION

Real dielectric permittivity (isolated) ± 0.5% or ± 0.2 dielectric units1 to 80 where 1 = air, 80 = distilled water0.001
Soil moisture for inorganic & mineral soil± 0.01 WFV for most soils

± 0.03 max for fine textured soils*
From completely dry to fully saturated (from 0% to 100% of saturation)0.001
Bulk electrical conductivity± 2.0% or 0.02 S/m whichever is typically greater0 to 1.5 S/m0.001
Pore Water ECN/Amust have > 0.10 wfv0.001
Temperature± 0.3°C-40°C to +75°C0.1°C
Inter-sensor variability ± 0.012 WFV (θ m3 m-3)n/a

ELECTRICAL AND COMMUNICATION

SDI-12

RS-485

Modbus

Power supply9-16 VDC9-16 VDC9-16 VDC
Power consumption1 mA idle / 25 mA active2.5 mA idle / 25 mA active2.5 mA idle / 25 mA active
Cable3-wire: power, ground, data4-wire: power, ground, com+, com-4-wire: power, ground, A, B
Max. cable length60 m (197 ft.)1,219 m (4,000 ft.)1,219 m (4,000 ft.)
Non-spliced: 304.8 m (1,000 ft.)Non-spliced: 304.8 m (1,000 ft.)
Baud Rate120096001200-115200

9600 (default)
Communication protocolSDI-12 Standard v. 1.2Custom or open specModbus RTU

ENVIRONMENTAL

Operating temperature range-40°C to +75°C**
Storage temperature range-40°C to +75°C
Water resistanceTolerates continuous full immersion
Cable18 gauge (SDI-12) / 22 gauge (RS-485 and Modbus), UV resistant, direct burial
Vibration and shock resistanceExcellent; potted components in PVC housing and 304 grade stainless steel tines
* Accuracy may vary with some soil textures. ** Temperature Test Certificate from -40°C to 75°C available

PHYSICAL

Length4.9” (124 mm)
Diameter1.6” (42 mm)
Weight7 oz. (200 g)
Optional slim housing version available: 6.5 oz. (184 g)
Cable weight0.86 oz/ft (80g/m)
Sensing volumeLength: 2.2” (5.7 cm)
(cylindrical region)Diameter: 1.2” (3.0 cm)

* Accuracy may vary with some soil textures.

** Temperature Testing Certificate available.

Ordering Infomation

PART #

DESCRIPTION

56012-02 / 56485-02 / 56585-02HydraProbe ( Professional ) with 25’ (7.62 m) cable, SDI-12 / RS-485 / Modbus
56012-04 / 56485-04 / 56585-04HydraProbe ( Professional ) with 50’ (15.24 m) of cable, SDI-12 / RS-485 / Modbus
56012-06 / 56485-06 / 56585-06HydraProbe ( Professional ) with 100’ (30.48 m) of cable, SDI-12 / RS-485 / Modbus
56000-TSTTemperature Test Certificate

Downloads

Download Stevens'
Product Catalog

Enter your name and email address to receive a link to the PDF version of the Stevens Product Catalog. You will be subscribed to the Stevens Water newsletter (you can unsubscribe any time).

Product Catalog download

Download the Stevens Soil Resource Guide

Written by the soil experts at Stevens, our soil resource guide contains a wealth of information and will benefit anyone involved with soil. Whether you’re a soil scientist, a farmer or a soil researcher, this 52 page book is a fantastic reference and source of up-to-date theories, practices and advice. 

Inside:

Soil Geomorphology

Soil Properties

Salinity / Electrical Conductivity (EC)

Dielectric Permittivity

Soil Monitoring Applications

Soil Moisture and Irrigation

Soil Sensor Technologies

Soil Sensor Calibration

Sensor Accuracy

…and much more!

Soil Resource Guide Download
Get it!

Shop Online / Inquire

Need more information? We’re here to help!​

Tell us a bit about yourself and your question and we’ll get back to you ASAP.

General inquiry

Articles

New Download – Soil Geomorphology: A Pedological Guide to Soil Moisture Sensors

Developed by B. K. Bellingham, Soil Scientist at Stevens, this is an excellent resource for anyone installing soil moisture sensors and interpreting soil moisture data. …

Read More →

HydraProbe and Stevens-Connect Aids in Understanding Drought Tolerant Crops

In the summer of 2019, Stevens Water Monitoring Systems and the Oregon State University (OSU) Hermiston Agricultural Research and Extension Center (HAREC) partnered to evaluate …

Read More →

The Stevens Soil Resource Guide

We’re happy to announce the publication of our Soil Resource Guide. Written by the soil experts at Stevens, it contains a wealth of information and will …

Read More →

Soil Physics Workshop – Syllabus

This year at the Meteorological Technology World Expo 2018 event in Amsterdam Stevens is excited to present a 2-hour Soil Physics Workshop. The interactive lecture will be hosted by Steven’s own Soil Scientist & Geochemist / Certified Professional Hydrologist Keith Bellingham.

Read More →

Summary of 2018 MOISST Workshop

Stevens recently sponsored the 2018 MOISST Workshop: From Soil Moisture Observations to Actionable Decisions, which was held June 4-7 in Lincoln, Nebraska. This workshop provided …

Read More →

HydraProbe used in Mars Rover Challenge by Manipal University in India

UPDATE: The talented team of engineers ended up placing 7th overall out of 95 entries. Congratulations guys and gals! The original article continues below. The …

Read More →

Soil Sensors Overview

As a leader in soil monitoring instrumentation, Stevens offers portable and in-situ sensors to measure moisture,  EC (salinity), temperature and matric potential. Moisture, EC and …

Read More →

Enhancements in Meteorological and Hydrological Models Using Soil Moisture Data

It has long been known that there is a strong relationship between soil water content and the health and yield of crops. But only in …

Read More →

Scientific Studies

Title Main Author Pub. Date Jornal Reference Application
Dielectric Loss and Calibration of the HydraProbe Soil Water Sensor Seyfried, M. S. 2005 Seyfried, M. S., L. E. Grant, E. Du, and K. Humes, Dielectric Loss and Calibration of the HydraProbe Soil Water Sensor Derivation of the HydraProbe's general soil moisture calibration
Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi arid region of southwestern USA Schnur, M. T. 2010 Ecological Informatics. doi:10.1016 / j.ecoinf.2010.05.001 Using HydraProbe soil sensor to assess regional effects on vegetation and root zone soil moisture in arid lands.
The NOAA Hydrometeorology Testbed Soil Moisture Observing Networks: Design, Instrumentation, and Preliminary Results Zamora, R. J. 2011 Journal of Atmospheric and Oceanic Technology, 28, 1129-1140. doi:10.1175/201OJTECHA1465.1 Using HydraProbe to forecast floods and assess flood risk.
Evaluation of Lichtenecker's Mixing Model for Predicting Permittivitty of Soil at 50 MHz Leao, T. P., E. P. 2015 American Society of Agricultural and Biological Engineers, 58 (1), 83-91. doi:10.13031/trans.58.1 0720 Dielectric Mixing and dielectric permittivity of heterogeneous materials.
Soil Moisture for Hydrlogical Applications: Open Questions and New Opportunities Brocca, L. C. 2017 Advances in Hydro-Meteorological Monitoring, Special Issue of Water, 9 (140). doi:10.3390/w9020140 Soil moisture and its effect on climate, drought and regional weather.
Climate Models Predict Increasing Temperature Variability in Poor Countries Bathiany, S. V. 2018 Science Advances, 4(5). doi:10.1126/sciadv.aar5809 Using soil moisture measurements to make improved climate models.
Incorporating Antecedent Soil Moisture into Streamflow Forecasting Abdoul Oubeidillah 2019 Hydrology 2019, 6(2), 50 Monitoring soil moisture to improve streamflow predictions.
Synthetic Aperture Radar (SAR) Compact Polarimetry for Soil Moisture Retrieval Amine Merzouki, Heather McNairn 2019 Remote Sens. 2019, 11, 2227 Examining whether Compact Polarimetry can accurately estimate surface soil moisture over bare fields.